Auditory attentional load attenuates age-related audiovisual integration: An EEG study

Neuropsychologia. 2022 Sep 9:174:108346. doi: 10.1016/j.neuropsychologia.2022.108346. Epub 2022 Aug 13.

Abstract

Studies have revealed that visual attentional load modulated audiovisual integration (AVI) greatly; however, auditory and visual attentional resources are separate to some degree, and task-irrelevant auditory information could arouse much faster and larger attentional alerting effects than visible information. Here, we aimed to explore how auditory attentional load influences AVI and how aging could have an effect. Thirty older and 30 younger adults participated in an AV discrimination task with an additional auditory distractor competing for attentional resources. The race model analysis revealed highest AVI in the low auditory attentional load condition (low > no > medium > high, pairwise comparison, all p ≤ 0.047) for younger adults and a higher AVI under the no auditory attentional-load condition (p = 0.008), but there was a lower AVI under the low (p = 0.019), medium (p < 0.001), and high (p = 0.021) auditory attentional-load conditions for older adults than for younger adults. The time-frequency analysis revealed higher theta- and alpha-band AVI oscillation under no and low auditory attentional-load conditions than under medium and high auditory attentional-load conditions for both older (all p ≤ 0.011) and younger (all p ≤ 0.024) adults. Additionally, Weighted Phase lag index (WPLI) analysis revealed higher theta-band and lower alpha-band global functional connectivity for older adults during AV stimuli processing (all p ≤ 0.031). These results suggested that the AVI was higher in the low attentional-load condition than in the no attentional-load condition but decreased inversely with increasing of attentional load and that there was a significant aging effect in older adults. In addition, the strengthened theta-band global functional connectivity in older adults during AV stimuli processing might be an adaptive phenomenon for age-related perceptual decline.

Keywords: Alpha oscillation; Attentional load; Audiovisual integration; Older adults; Theta oscillation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Aged
  • Aging
  • Auditory Perception*
  • Electroencephalography
  • Humans
  • Visual Perception*