Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images

Sci Rep. 2022 Aug 17;12(1):14009. doi: 10.1038/s41598-022-18436-w.


The detection of maxillary sinus wall is important in dental fields such as implant surgery, tooth extraction, and odontogenic disease diagnosis. The accurate segmentation of the maxillary sinus is required as a cornerstone for diagnosis and treatment planning. This study proposes a deep learning-based method for fully automatic segmentation of the maxillary sinus, including clear or hazy states, on cone-beam computed tomographic (CBCT) images. A model for segmentation of the maxillary sinuses was developed using U-Net, a convolutional neural network, and a total of 19,350 CBCT images were used from 90 maxillary sinuses (34 clear sinuses, 56 hazy sinuses). Post-processing to eliminate prediction errors of the U-Net segmentation results increased the accuracy. The average prediction results of U-Net were a dice similarity coefficient (DSC) of 0.9090 ± 0.1921 and a Hausdorff distance (HD) of 2.7013 ± 4.6154. After post-processing, the average results improved to a DSC of 0.9099 ± 0.1914 and an HD of 2.1470 ± 2.2790. The proposed deep learning model with post-processing showed good performance for clear and hazy maxillary sinus segmentation. This model has the potential to help dental clinicians with maxillary sinus segmentation, yielding equivalent accuracy in a variety of cases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cone-Beam Computed Tomography / methods
  • Deep Learning*
  • Image Processing, Computer-Assisted / methods
  • Maxillary Sinus* / diagnostic imaging
  • Neural Networks, Computer