Purpose: Deep brain stimulation is a neurosurgical procedure used in treatment of a growing spectrum of movement disorders. Inaccuracies in electrode placement, however, can result in poor symptom control or adverse effects and confound variability in clinical outcomes. A deformable 3D-2D registration method is presented for high-precision 3D guidance of neuroelectrodes.
Methods: The approach employs a model-based, deformable algorithm for 3D-2D image registration. Variations in lead design are captured in a parametric 3D model based on a B-spline curve. The registration is solved through iterative optimization of 16 degrees-of-freedom that maximize image similarity between the 2 acquired radiographs and simulated forward projections of the neuroelectrode model. The approach was evaluated in phantom models with respect to pertinent imaging parameters, including view selection and imaging dose.
Results: The results demonstrate an accuracy of (0.2 ± 0.2) mm in 3D localization of individual electrodes. The solution was observed to be robust to changes in pertinent imaging parameters, which demonstrate accurate localization with ≥20° view separation and at 1/10th the dose of a standard fluoroscopy frame.
Conclusions: The presented approach provides the means for guiding neuroelectrode placement from 2 low-dose radiographic images in a manner that accommodates potential deformations at the target anatomical site. Future work will focus on improving runtime though learning-based initialization, application in reducing reconstruction metal artifacts for 3D verification of placement, and extensive evaluation in clinical data from an IRB study underway.
Keywords: 3D-2D image registration; Image-guided surgery; deformable registration; intraoperative imaging.