Effect of topographical features on hydrologically connected riparian landscapes across different land-use patterns in colossal dams and reservoirs

Sci Total Environ. 2022 Dec 10;851(Pt 1):158131. doi: 10.1016/j.scitotenv.2022.158131. Epub 2022 Aug 18.

Abstract

Topographic features impact the riparian landscape, which shapes reservoir ecosystems. We know little about ecological network parameter (ENP) responses to topographical features (riparian width, stream-channel width, slope, and elevation) from three land-use areas (rural, urban, and rural-urban transitional) in larger dams and reservoirs globally. This study used a field-based approach with 305 transects on an inundated area of 58,000 km2 inside the Three Gorges Dam Reservoir (TGDR) in China. We discovered that topographical features influenced ENPs differently, involving parameters of plant cover, regeneration, exotics, erosion, habitat, and stressors. As per the Pearson correlation (p < 0.05), riparian width had the most significant effect on transitional ENPs and the least impact on urban ENPs. Riparian width showed the most important influence on the parameters of exotics (with r ≤ -0.44) and erosion (r ≤ 0.56). In contrast, stream-channel widths had the greatest effect on rural ENPs and the least on urban and transitional ENPs. The erosion parameters were the most affected (r ≤ -0.26) by stream width. The slope showed relationships with the fewest ENPs in all three areas and influenced the stress (with a range of -0.51 <r < 0.85) and erosion (r ≤ -0.39) parameters. The impact of elevation was higher in urban areas and was positively correlated with the parameters of plant cover (r ≤ 0.70), erosion (r ≤ 0.58), and habitat (r ≤ 0.69). These results justify the policy emphasis on riparian areas that are managed using the same techniques, which generally ignores their topographical features.

Keywords: Elevation; Landscape function; Riparian width; Streams; Three Gorges Reservoir; Yangtze River.

MeSH terms

  • China
  • Ecosystem*
  • Plants
  • Rivers*