Breasi-CRISPR: an efficient genome-editing method to interrogate protein localization and protein-protein interactions in the embryonic mouse cortex

Development. 2022 Sep 15;149(18):dev200616. doi: 10.1242/dev.200616. Epub 2022 Sep 26.

Abstract

In developing tissues, knowing the localization and interactors of proteins of interest is key to understanding their function. Here, we describe the Breasi-CRISPR approach (Brain Easi-CRISPR), combining Easi-CRISPR with in utero electroporation to tag endogenous proteins within embryonic mouse brains. Breasi-CRISPR enables knock-in of both short and long epitope tag sequences with high efficiency. We visualized epitope-tagged proteins with varied expression levels, such as ACTB, LMNB1, EMD, FMRP, NOTCH1 and RPL22. Detection was possible by immunohistochemistry as soon as 1 day after electroporation and we observed efficient gene editing in up to 50% of electroporated cells. Moreover, tagged proteins could be detected by immunoblotting in lysates from individual cortices. Next, we demonstrated that Breasi-CRISPR enables the tagging of proteins with fluorophores, allowing visualization of endogenous proteins by live imaging in organotypic brain slices. Finally, we used Breasi-CRISPR to perform co-immunoprecipitation mass-spectrometry analyses of the autism-related protein FMRP to discover its interactome in the embryonic cortex. Together, these data demonstrate that Breasi-CRISPR is a powerful tool with diverse applications that will propel the understanding of protein function in neurodevelopment.

Keywords: In utero electroporation; Brain development; CRISPR; FMRP; Neurons; Radial glia.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • CRISPR-Cas Systems / genetics
  • Clustered Regularly Interspaced Short Palindromic Repeats* / genetics
  • Electroporation / methods
  • Epitopes
  • Gene Editing* / methods
  • Mice

Substances

  • Epitopes