Domain specific mutations in dyskerin disrupt 3' end processing of scaRNA13

Nucleic Acids Res. 2022 Sep 9;50(16):9413-9425. doi: 10.1093/nar/gkac706.


Mutations in DKC1 (encoding dyskerin) cause telomere diseases including dyskeratosis congenita (DC) by decreasing steady-state levels of TERC, the non-coding RNA component of telomerase. How DKC1 mutations variably impact numerous other snoRNAs remains unclear, which is a barrier to understanding disease mechanisms in DC beyond impaired telomere maintenance. Here, using DC patient iPSCs, we show that mutations in the dyskerin N-terminal extension domain (NTE) dysregulate scaRNA13. In iPSCs carrying the del37L NTE mutation or engineered to carry NTE mutations via CRISPR/Cas9, but not in those with C-terminal mutations, we found scaRNA13 transcripts with aberrant 3' extensions, as seen when the exoribonuclease PARN is mutated in DC. Biogenesis of scaRNA13 was rescued by repair of the del37L DKC1 mutation by genome-editing, or genetic or pharmacological inactivation of the polymerase PAPD5, which counteracts PARN. Inspection of the human telomerase cryo-EM structure revealed that in addition to mediating intermolecular dyskerin interactions, the NTE interacts with terminal residues of the associated snoRNA, indicating a role for this domain in 3' end definition. Our results provide mechanistic insights into the interplay of dyskerin and the PARN/PAPD5 axis in the biogenesis and accumulation of snoRNAs beyond TERC, broadening our understanding of ncRNA dysregulation in human diseases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism
  • Dyskeratosis Congenita* / genetics
  • Humans
  • Mutation
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism
  • RNA-Binding Proteins / genetics
  • Telomerase* / genetics
  • Telomerase* / metabolism
  • Telomere / metabolism


  • Telomerase
  • Cell Cycle Proteins
  • Nuclear Proteins
  • RNA-Binding Proteins
  • DKC1 protein, human