Evolving Experimental Techniques for Structure-Based Drug Design

J Phys Chem B. 2022 Sep 8;126(35):6599-6607. doi: 10.1021/acs.jpcb.2c04344. Epub 2022 Aug 27.

Abstract

Structure-based drug design (SBDD) is a prominent method in rational drug development and has traditionally benefitted from the atomic models of protein targets obtained using X-ray crystallography at cryogenic temperatures. In this perspective, we highlight recent advances in the development of structural techniques that are capable of probing dynamic information about protein targets. First, we discuss advances in the field of X-ray crystallography including serial room-temperature crystallography as a method for obtaining high-resolution conformational dynamics of protein-inhibitor complexes. Next, we look at cryogenic electron microscopy (cryoEM), another high-resolution technique that has recently been used to study proteins and protein complexes that are too difficult to crystallize. Finally, we present small-angle X-ray scattering (SAXS) as a potential high-throughput screening tool to identify inhibitors that target protein complexes and protein oligomerization.

Publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Crystallography, X-Ray
  • Drug Design*
  • Proteins* / chemistry
  • Scattering, Small Angle
  • X-Ray Diffraction

Substances

  • Proteins