Design of Organic-Inorganic Hybrid Heterostructured Semiconductors via High-Throughput Materials Screening for Optoelectronic Applications

J Am Chem Soc. 2022 Sep 14;144(36):16656-16666. doi: 10.1021/jacs.2c07434. Epub 2022 Aug 29.

Abstract

Organic-inorganic hybrid semiconductors, of which organometal halide perovskites are representative examples, have drawn significant research interest as promising candidates for next-generation optoelectronic applications. This interest is mainly ascribed to the emergent optoelectronic properties of the hybrid semiconductors that are distinct from those of their purely inorganic and organic counterparts as well as different material fabrication strategies and the other material (e.g., mechanical) properties that combine the advantages of both. Herein, we present a high-throughput first-principles material screening study of the hybrid heterostructured semiconductors (HHSs) that differ entirely from organometal halide perovskite hybrid ion-substituting semiconductors. HHSs crystallize as superlattice structures composed of inorganic tetrahedrally coordinated semiconductor sublayers and organic sublayers made of bidentate chain-like molecules. By changing the composition (e.g., IV, III-V, II-VI, I-III-VI2 semiconductor) and polymorph (e.g., wurtzite and zinc-blende) of the inorganic components, the type of organic molecules (e.g., ethylenediamine, ethylene glycol, and ethanedithiol), and the thickness of the composing layers across 234 candidate HHSs, we investigated their thermodynamic, electronic structure, and optoelectronic properties. Thermodynamic stability analysis indicates the existence of 96 stable HHSs beyond the ZnTe/ZnSe-based ones synthesized experimentally. The electronic structure and optoelectronic properties of HHSs can be modulated over a wide range by manipulating their structural variants. A machine learning approach was further applied to the high-throughput calculated data to identify the critical descriptors determining thermodynamic stability and electronic band gap. Our results indicate promising prospects and provide valuable guidance for the rational design of organic-inorganic hybrid heterostructured semiconductors for potential optoelectronic applications.