Multi-target action of β-alanine protects cerebellar tissue from ischemic damage

Cell Death Dis. 2022 Aug 29;13(8):747. doi: 10.1038/s41419-022-05159-z.

Abstract

Brain ischemic stroke is among the leading causes of death and long-term disability. New treatments that alleviate brain cell damage until blood supply is restored are urgently required. The emerging focus of anti-stroke strategies has been on blood-brain-barrier permeable drugs that exhibit multiple sites of action. Here, we combine single-cell electrophysiology with live-cell imaging to find that β-Alanine (β-Ala) protects key physiological functions of brain cells that are exposed to acute stroke-mimicking conditions in ex vivo brain preparations. β-Ala exerts its neuroprotective action through several distinct pharmacological mechanisms, none of which alone could reproduce the neuroprotective effect. Since β-Ala crosses the blood-brain barrier and is part of a normal human diet, we suggest that it has a strong potential for acute stroke treatment and facilitation of recovery.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain
  • Brain Injuries* / drug therapy
  • Brain Ischemia* / drug therapy
  • Humans
  • Neuroprotective Agents* / pharmacology
  • Neuroprotective Agents* / therapeutic use
  • Stroke* / drug therapy
  • beta-Alanine / pharmacology

Substances

  • Neuroprotective Agents
  • beta-Alanine