Gut bacterial nutrient preferences quantified in vivo
- PMID: 36055202
- PMCID: PMC9450212
- DOI: 10.1016/j.cell.2022.07.020
Gut bacterial nutrient preferences quantified in vivo
Abstract
Great progress has been made in understanding gut microbiomes' products and their effects on health and disease. Less attention, however, has been given to the inputs that gut bacteria consume. Here, we quantitatively examine inputs and outputs of the mouse gut microbiome, using isotope tracing. The main input to microbial carbohydrate fermentation is dietary fiber and to branched-chain fatty acids and aromatic metabolites is dietary protein. In addition, circulating host lactate, 3-hydroxybutyrate, and urea (but not glucose or amino acids) feed the gut microbiome. To determine the nutrient preferences across bacteria, we traced into genus-specific bacterial protein sequences. We found systematic differences in nutrient use: most genera in the phylum Firmicutes prefer dietary protein, Bacteroides dietary fiber, and Akkermansia circulating host lactate. Such preferences correlate with microbiome composition changes in response to dietary modifications. Thus, diet shapes the microbiome by promoting the growth of bacteria that preferentially use the ingested nutrients.
Keywords: diet; host-microbiome interactions; isotope tracing; metabolism; metabolomics; methodology; mice; microbiome; nutrient; proteomics.
Copyright © 2022 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests J.D.R. is a member of the Rutgers Cancer Institute of New Jersey and the University of Pennsylvania Diabetes Research Center; a co-founder and stockholder in Empress Therapeutics and Serien Therapeutics; and an advisor and stockholder in Agios Pharmaceuticals, Bantam Pharmaceuticals, Colorado Research Partners, Rafael Pharmaceuticals, Barer Institute, and L.E.A.F. Pharmaceuticals. M.S.D. is a member of the scientific advisory boards of DeepBiome Therapeutics and VastBiome.
Figures
Comment in
-
Elucidating the nutrient preferences of mouse gut bacteria.Nat Rev Gastroenterol Hepatol. 2022 Nov;19(11):687. doi: 10.1038/s41575-022-00699-3. Nat Rev Gastroenterol Hepatol. 2022. PMID: 36175553 No abstract available.
Similar articles
-
A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference.Nutrients. 2020 Oct 20;12(10):3197. doi: 10.3390/nu12103197. Nutrients. 2020. PMID: 33092019 Free PMC article.
-
It's the fiber, not the fat: significant effects of dietary challenge on the gut microbiome.Microbiome. 2020 Feb 11;8(1):15. doi: 10.1186/s40168-020-0791-6. Microbiome. 2020. PMID: 32046785 Free PMC article.
-
Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients.Eur J Nutr. 2018 Feb;57(1):25-49. doi: 10.1007/s00394-017-1546-4. Epub 2017 Oct 30. Eur J Nutr. 2018. PMID: 29086061 Free PMC article. Review.
-
Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health.Gut Microbes. 2021 Jan-Dec;13(1):1-18. doi: 10.1080/19490976.2020.1869502. Gut Microbes. 2021. PMID: 33615984 Free PMC article. Review.
-
Dietary Supplementation with Sodium Sulfate Improves Rumen Fermentation, Fiber Digestibility, and the Plasma Metabolome through Modulation of Rumen Bacterial Communities in Steers.Appl Environ Microbiol. 2020 Oct 28;86(22):e01412-20. doi: 10.1128/AEM.01412-20. Print 2020 Oct 28. Appl Environ Microbiol. 2020. PMID: 32859601 Free PMC article.
Cited by
-
Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential.Signal Transduct Target Ther. 2024 Mar 11;9(1):59. doi: 10.1038/s41392-024-01771-x. Signal Transduct Target Ther. 2024. PMID: 38462638 Free PMC article. Review.
-
Complex carbohydrate utilization by gut bacteria modulates host food preference.bioRxiv [Preprint]. 2024 Feb 14:2024.02.13.580152. doi: 10.1101/2024.02.13.580152. bioRxiv. 2024. PMID: 38405943 Free PMC article. Preprint.
-
NAD metabolic therapy in metabolic dysfunction-associated steatotic liver disease: Possible roles of gut microbiota.iScience. 2024 Feb 9;27(3):109174. doi: 10.1016/j.isci.2024.109174. eCollection 2024 Mar 15. iScience. 2024. PMID: 38405608 Free PMC article. Review.
-
Nitrogen assimilation by E. coli in the mammalian intestine.mBio. 2024 Mar 13;15(3):e0002524. doi: 10.1128/mbio.00025-24. Epub 2024 Feb 21. mBio. 2024. PMID: 38380942 Free PMC article.
-
Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases.Signal Transduct Target Ther. 2024 Feb 16;9(1):37. doi: 10.1038/s41392-024-01743-1. Signal Transduct Target Ther. 2024. PMID: 38360862 Free PMC article. Review.
References
-
- Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A, Grunberg S, Baldassano RN, Lewis JD, Li H, Thom SR, Bushman FD, Vinogradov SA, Wu GD, 2014. Correlation Between Intraluminal Oxygen Gradient and Radial Partitioning of Intestinal Microbiota. Gastroenterology 147, 1055–1063.e8. 10.1053/j.gastro.2014.07.020 - DOI - PMC - PubMed
-
- Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, Palatinszky M, Schintlmeister A, Schmid MC, Hanson BT, Shterzer N, Mizrahi I, Rauch I, Decker T, Bocklitz T, Popp J, Gibson CM, Fowler PW, Huang WE, Wagner M, 2015. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc. Natl. Acad. Sci 112, E194–E203. 10.1073/pnas.1420406112 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
