High Directional Water Transport Graphene Oxide Biphilic Stack

Mol Simul. 2022;48(7):621-630. doi: 10.1080/08927022.2022.2042529. Epub 2022 Feb 28.

Abstract

Understanding the nature of water transport in nanoscale is of high importance. Graphene properties such as mass flow rate, stability, filtration efficiency, and selectivity have been studied in various fields. It is a widely held view that the hydrophilicity of graphene oxide enhances the water transport properties. In this study, it is shown that despite this belief, a combination of graphene and graphene oxide can yield superior transport properties including high mass flow rate and directionality. Firstly, different membrane characteristics such as the smallest pore diameter for water molecules sieving and mass flow rate have been evaluated. Furthermore, a combination of graphene and graphene oxide, a biphilic stack of hydrophobic and hydrophilic layers, are used to evaluate the mass flow rates and results are compared with that of normal graphene oxide laminates. The proposed structure acts like a water diode i.e. conduct water molecules in a desired direction and increases the mass flow rate several times. The effect of interatomic potential, oxidation level and charge, and the spacing between layers on both mass flow rate and directionality are examined. It is found that an optimized structure conducts water in a desired direction and increases the mass flow rate up to 10 times for the small interlayer distance of 7 Å compared to the normal graphene oxide laminates. The given structures can be used in a wide range of filtration applications where selective water sieving with high mass flow rate is desired.

Keywords: Biphilic Stack; Graphene Oxide; Nanofiltration; Water Diode.