Pan-Genome Analysis of Campylobacter: Insights on the Genomic Diversity and Virulence Profile

Microbiol Spectr. 2022 Oct 26;10(5):e0102922. doi: 10.1128/spectrum.01029-22. Epub 2022 Sep 7.

Abstract

The genus Campylobacter contains pathogens that cause bacterial gastroenteritis in humans and animals. Despite large-scale sequencing efforts to raise clinical awareness of Campylobacter, little is known about the diversity and functions of virulence factors. Here, we constructed the pan-genome of Campylobacter using 39 representative genomes, elucidating their genetic diversity, evolutionary characteristics, and virulence and resistance profiles. The Campylobacter pan-genome was open and showed extensive genome variability, with high levels of gene expansion and contraction as the organism evolved. These Campylobacter members had diverse virulence gene content, and six potential core virulence genes (porA, PEB4, cheY, htrB, Cj1135, and kpsF) have been identified. The conserved mechanisms for Campylobacter pathogenicity were related to adherence, motility, and immune modulation. We emphasized the relative importance of variable virulence genes. Many virulence genes have experienced expansion or contraction in specific lineages, which may be one of the factors causing differences in the content of virulence genes. Additionally, these Campylobacter genomes have a high prevalence of the cmeA and cmeC genes, which are linked to the CmeABC pump and contribute to multidrug resistance. The genomic variations, core and variable virulence factors, and resistance genes of Campylobacter characterized in this study would contribute to a better understanding of the virulence of Campylobacter and more effective use of candidates for drug development and prevention of Campylobacter infections. IMPORTANCE Pathogenic members of the genus Campylobacter are recognized as one of the major causative agents of human bacterial gastroenteritis. This study revealed the pan-genome of 39 Campylobacter species, provided the most updated reconstruction of the global virulence gene pool of 39 Campylobacter species, and identified species-related virulence differences. This study highlighted the basic conserved functionality and specificity of pathogenicity that are crucial to infection, which was critical for improving the diagnosis and prevention of Campylobacter infections.

Keywords: Campylobacter; antibiotic resistance; pan-genome; pathogenicity; virulence factor.

MeSH terms

  • Animals
  • Campylobacter Infections*
  • Campylobacter* / genetics
  • Gastroenteritis*
  • Genome, Bacterial
  • Genomics
  • Humans
  • Phylogeny
  • Virulence / genetics
  • Virulence Factors / genetics

Substances

  • Virulence Factors