The objectives of this study were to develop a fecal marking protocol to distinguish male from female samples during the echidna breeding season and to determine if normalizing fecal progesterone metabolite data for inorganic content improves the detection of biologically relevant changes in metabolite concentrations. Over a period of 6 weeks, four echidnas were provided with green food coloring powder mixed into 20 g of their regular feed with the dose adjusted weekly by 0.05 g. The proportion of organic (feces) versus inorganic matter (sand) in the fecal samples of three echidnas was determined by combustion of organic matter. Hormonal data was then expressed as metabolite concentration per total dry mass (with sand) of extracted sample versus metabolite concentration per total mass of organic material (without sand). The optimal dose of food coloring powder was 0.30 g: this was excreted in the feces of all echidnas within 24 h of consumption with color present for two consecutive days. Correction for inorganic content (sand) did not significantly affect variability of fecal progesterone metabolite levels (mean CV ± SE with sand: 142.3 ± 13.3%; without sand: 127.0 ± 14.4%; W = 6, p = .2500), or the magnitude of change from basal to elevated fecal progesterone metabolite concentrations (mean ± SE with sand: 8.4 ± 1.7; without sand: 6.6 ± 0.5, W = 10, p = .1250). Furthermore, progesterone metabolite concentrations before and after correction for sand contamination correlated strongly (r = .92, p = < .001). These methods will facilitate future reproductive endocrinology studies of echidna and other myrmecophagous species.
Keywords: fecal marker; progesterone metabolites; sand contamination; tachyglossidae.
© 2022 The Authors. Zoo Biology published by Wiley Periodicals LLC.