Genetic Variation among Pharmacogenes in the Sardinian Population

Int J Mol Sci. 2022 Sep 2;23(17):10058. doi: 10.3390/ijms231710058.


Pharmacogenetics (PGx) aims to identify the genetic factors that determine inter-individual differences in response to drug treatment maximizing efficacy while decreasing the risk of adverse events. Estimating the prevalence of PGx variants involved in drug response, is a critical preparatory step for large-scale implementation of a personalized medicine program in a target population. Here, we profiled pharmacogenetic variation in fourteen clinically relevant genes in a representative sample set of 1577 unrelated sequenced Sardinians, an ancient island population that accounts for genetic variation in Europe as a whole, and, at the same time is enriched in genetic variants that are very rare elsewhere. To this end, we used PGxPOP, a PGx allele caller based on the guidelines created by the Clinical Pharmacogenetics Implementation Consortium (CPIC), to identify the main phenotypes associated with the PGx alleles most represented in Sardinians. We estimated that 99.43% of Sardinian individuals might potentially respond atypically to at least one drug, that on average each individual is expected to have an abnormal response to about 17 drugs, and that for 27 drugs the fraction of the population at risk of atypical responses to therapy is more than 40%. Finally, we identified 174 pharmacogenetic variants for which the minor allele frequency was at least 10% higher among Sardinians as compared to other European populations, a fact that may contribute to substantial interpopulation variability in drug response phenotypes. This study provides baseline information for further large-scale pharmacogenomic investigations in the Sardinian population and underlines the importance of PGx characterization of diverse European populations, such as Sardinians.

Keywords: drug response; pharmacogenetics; pharmacogenomics.

MeSH terms

  • Gene Frequency
  • Genetic Variation
  • Pharmacogenetics*
  • Pharmacogenomic Testing
  • Pharmacogenomic Variants
  • Precision Medicine*