Chondroitin sulfate methacrylate (CS-MA) is a semisynthetic biopolymer increasingly used for the fabrication of chemical hydrogels. In this study, the methacrylation reaction of native CS was carried out with glycidyl methacrylate in dimethyl sulfoxide and optimized to obtain tunable and reproducible methacrylation degrees in a short reaction time. The methacrylation reaction was deeply characterized by mono- and bi-dimensional (1D, 2D) NMR spectroscopy of CS-MA derivatives with different methacrylation degrees. In contrast to what previously reported in the literature, HSQC, HMBC and TOCSY analyses revealed that the methacrylation reaction proceeds via both epoxy ring-opening and transesterification, involving predominantly the primary hydroxyl groups of CS, while preserving sulfate and carboxyl groups of the biopolymer. These findings are of fundamental importance for appropriate and rational design of CS-MA-based biomaterials.
Keywords: 2D-NMR; Chondroitin sulfate methacrylate; Epoxy ring-opening; Glycosaminoglycans; Transesterification.
Copyright © 2022 Elsevier Ltd. All rights reserved.