Does freeze-thaw action affect the extractability and bioavailability of Pb and As in contaminated soils?

Sci Total Environ. 2023 Jan 1:854:158453. doi: 10.1016/j.scitotenv.2022.158453. Epub 2022 Sep 8.

Abstract

As global warming intensifies, there will be increased uncertainty as to the environmental behavior and risks from heavy metals in industrial/legacy contaminated sites in permafrost regions. Bioavailability has been increasingly used for human health risk assessment of heavy metals in contaminated soils. Soil heavy metal bioavailability depends on soil physicochemical properties, and freeze-thaw affects soil physical, chemical and biological processes. However it is not clear whether freeze-thaw has an effect on the bioavailability of soil heavy metals. In this study, soils contaminated with Pb and As were collected from 10 industrial sites in northeast China. Extractability and bioavailability of soil Pb and As were determined by the Tessier sequential extraction method and four in vitro gastron-intestinal simulation methods under control and freeze-thaw treatments. The aims were: to compare the results of extraction and bioavailability from laboratory experiments which artificially simulate freeze-thaw conditions against control soils; to explore the correlation between bioavailability of Pb/As and soil properties. Freeze-thaw significantly decreased soil pH, and increased the soil weight surface area. Freeze-thaw decreased the percentage in the residual fraction, and increased the percentage of Pb and As in the exchangeable fraction, carbonate-bound fraction, Fe-Mn oxides-bound fraction and organic-bound fraction, relative to control soils. Freeze-thaw significantly increased Pb and As bioavailability compared to the controls. Pb and As released in the gastric phase of the four methods was significantly higher than that in the intestinal phase. Further analysis of correlations between Pb and As bioavailability and soil properties indicated that total concentrations of Al, Fe and Mn, particle size, and weight surface area significantly correlated to Pb and As bioavailability. Overall, this study demonstrated that freeze-thaw did influence the bioavailability of soil heavy metals. It suggests the freeze-thaw action should be comprehensively considered in the human risk assessment of soil pollutants in permafrost regions.

Keywords: Bioavailability; Heavy metals; In vitro simulation methods; Industrial contaminated land; Seasonal permafrost regions; Tessier sequential extraction method.

MeSH terms

  • Biological Availability
  • Environmental Pollution / analysis
  • Humans
  • Lead / analysis
  • Metals, Heavy* / analysis
  • Soil / chemistry
  • Soil Pollutants* / analysis

Substances

  • Lead
  • Metals, Heavy
  • Soil
  • Soil Pollutants