The beta 1----2-D-xylose and alpha 1----3-L-fucose substituted N-linked oligosaccharides from Erythrina cristagalli lectin. Isolation, characterisation and comparison with other legume lectins

Eur J Biochem. 1987 Jul 15;166(2):311-20. doi: 10.1111/j.1432-1033.1987.tb13516.x.


The carbohydrate moieties of Erythrina cristagalli lectin were released as oligosaccharides by hydrazinolysis, followed by N-acetylation and reduction with NaB3H4. Fractionation of the tritium-labelled oligosaccharide mixture by Bio-Gel P-4 column chromatography and high-voltage borate electrophoresis revealed that it is composed of five neutral oligosaccharides. Structural studies by sequential exoglycosidase digestion in combination with methylation analysis and two-dimensional 1H-NMR showed that the major component was the fucose-containing heptasaccharide Man alpha 3(Man alpha 6)(Xyl beta 2)Man beta 4GlcNAc beta 4(Fuc alpha 3)GlcNAcol. This is the first report of such a structure in plant lectins. Small amounts of the corresponding afucosyl hexasaccharide were also identified, as well as three other minor components. The structure of the heptasaccharide shows the twin characteristics of a newly established family of N-linked glycans, found to date only in plants. The characteristics are substitution of the common pentasaccharide core [Man alpha 3(Man alpha 6)Man beta 4GlcNAc beta 4GlcNAc] by a D-xylose residue linked beta 1----2 to the beta-mannosyl residue and an L-fucose residue linked alpha 1----3 to the reducing terminal N-acetylglucosamine residue. The oligosaccharide heterogeneity pattern for Erythrina cristagalli lectin was also found for the lectins from four other Erythrina species and the lectins of two other legumes, Sophora japonica and Lonchocarpus capassa.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbohydrate Conformation
  • Carbohydrate Sequence
  • Fabaceae*
  • Fucose*
  • Glycopeptides / isolation & purification
  • Lectins*
  • Oligosaccharides* / isolation & purification
  • Plant Lectins
  • Plants, Medicinal*
  • Species Specificity
  • Structure-Activity Relationship
  • Xylose*


  • Glycopeptides
  • Lectins
  • Oligosaccharides
  • Plant Lectins
  • Fucose
  • Xylose