Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec:85:105471.
doi: 10.1016/j.tiv.2022.105471. Epub 2022 Sep 10.

Predicting fetal exposure of crizotinib during pregnancy: Combining human ex vivo placenta perfusion data with physiologically-based pharmacokinetic modeling

Affiliations
Free article

Predicting fetal exposure of crizotinib during pregnancy: Combining human ex vivo placenta perfusion data with physiologically-based pharmacokinetic modeling

Damian Roelofsen et al. Toxicol In Vitro. 2022 Dec.
Free article

Abstract

Commercially available physiologically-based pharmacokinetic (PBPK) modeling platforms increasingly allow estimations of fetal exposure to xenobiotics. We aimed to explore a physiology-based approach in which literature data from ex vivo placenta perfusion studies are used to parameterize Simcyp's pregnancy-PBPK (p-PBPK) model, taking crizotinib as an example. First, a physiologically-based semi-mechanistic placenta (PBMP) model was developed in MATLAB to analyze placenta perfusion data of crizotinib. Mixed-effects modeling was performed to derive intrinsic unbound clearance values across the maternal-placental barrier and fetal-placental barrier. Values were then used for parameterization of the p-PBPK model. The PBMP model adequately described the perfusion data. Clearance was estimated to be 71 mL/min and 535 mL/min for the maternal placental uptake and efflux, and 8 mL/min and 163 mL/min for fetal placental uptake and efflux, respectively. For oral dosing of 250 mg twice daily, p-PBPK modeling predicted a Cmax and AUC0-τ of 0.08 mg/L and 0.78 mg/L*h in the umbilical vein at steady-state, respectively. In placental tissue, a Cmax of 5.04 mg/L was predicted. In conclusion, PBMP model-based data analysis and the associated p-PBPK modeling approach illustrate how ex vivo placenta perfusion data may be used for fetal exposure predictions.

Keywords: Fetal exposure prediction; PBPK modeling; Placental transfer; Quantitative in vitro-in vivo extrapolation; Reproductive toxicology.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources