Assessment of the frequency dependence of acoustic properties on material, composition, and scatterer size of the medium

J Med Ultrason (2001). 2022 Oct;49(4):569-578. doi: 10.1007/s10396-022-01235-1. Epub 2022 Sep 13.


Purpose: The aim of this study was to elucidate the frequency dependence of the speed of sound (SoS) and attenuation coefficients in phantoms with controlled attenuation properties (scatterer density, scatterer size, absorption control material) and rat livers.

Methods: The frequency dependence of SoS and attenuation coefficients were evaluated with ultrasound (1-15 MHz) by observing multiple phantoms with different scatterer sizes, densities, and presence or absence of evaporated milk as absorbing media. Normal and fatty model rat livers were examined with the same protocol.

Results: The phantom results revealed that the scatterer density and SoS of the base media were the dominant factors causing the changes in SoS. Frequency dependence was not observed in SoS. Assessment of the attenuation coefficient showed that the frequency dependence was mainly affected by absorption attenuation when the scatterer was as small as a hepatocyte (i.e. ≤ 10 µm). Scattering attenuation was also observed to affect frequency dependence when the scatterer was as large as lipid droplets (i.e. ≤ 40 µm).

Conclusion: Assuming a consistent size of the main scatterers in the evaluation medium, the frequency dependence of the SoS and attenuation coefficients may provide insight into the scatterer density and the contribution of absorption and scattering attenuation. Further studies in the higher frequency band (up to about 50 MHz) are expected to advance the clinical application of high-frequency ultrasound.

Keywords: Attenuation coefficient; Fatty liver; Frequency dependence; Quantitative ultrasound; Speed of sound.

MeSH terms

  • Acoustics*
  • Animals
  • Phantoms, Imaging
  • Rats
  • Sound*
  • Ultrasonography / methods