Characterization of two novel ammonia transporters, Hiat1a and Hiat1b, in the teleost model system Danio rerio

J Exp Biol. 2022 Oct 15;225(20):jeb244279. doi: 10.1242/jeb.244279. Epub 2022 Oct 17.

Abstract

Ammonia excretion in fish excretory epithelia is a complex interplay of multiple membrane transport proteins and mechanisms. Using the model system of zebrafish (Danio rerio) larvae, here we identified three paralogues of a novel ammonia transporter, hippocampus-abundant transcript 1 (DrHiat1), also found in most vertebrates. When functionally expressed in Xenopus laevis oocytes, DrHiat1a and DrHiat1b promoted methylamine uptake in a competitive manner with ammonia. In situ hybridization experiments showed that both transporters were expressed as early as the 4-cell stage in zebrafish embryos and could be identified in most tissues 4 days post-fertilization. Larvae experiencing morpholino-mediated knockdown of DrHiat1b exhibited significantly lower whole-body ammonia excretion rates compared with control larvae. Markedly decreased site-specific total ammonia excretion of up to 85% was observed in both the pharyngeal region (site of developing gills) and the yolk sac (region shown to have the highest NH4+ flux). This study is the first to identify DrHiat1b/DrHIAT1 in particular as an important contributor to ammonia excretion in larval zebrafish. Being evolutionarily conserved, these proteins are likely involved in multiple other general ammonia-handling mechanisms, making them worthy candidates for future studies on nitrogen regulation in fishes and across the animal kingdom.

Keywords: In situ hybridization; Morpholino; SIET; Zebrafish larvae.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonia / metabolism
  • Animals
  • Cation Transport Proteins* / metabolism
  • Larva / metabolism
  • Methylamines / metabolism
  • Morpholinos
  • Nitrogen / metabolism
  • Zebrafish Proteins / genetics
  • Zebrafish Proteins / metabolism
  • Zebrafish* / genetics
  • Zebrafish* / metabolism

Substances

  • Cation Transport Proteins
  • Methylamines
  • Morpholinos
  • Zebrafish Proteins
  • Ammonia
  • Nitrogen