Mass Trapping and Larval Source Management for Mosquito Elimination on Small Maldivian Islands

Insects. 2022 Sep 2;13(9):805. doi: 10.3390/insects13090805.


Globally, environmental impacts and insecticide resistance are forcing pest control organizations to adopt eco-friendly and insecticide-free alternatives to reduce the risk of mosquito-borne diseases, which affect millions of people, such as dengue, chikungunya or Zika virus. We used, for the first time, a combination of human odor-baited mosquito traps (at 6.0 traps/ha), oviposition traps (7.2 traps/ha) and larval source management (LSM) to practically eliminate populations of the Asian tiger mosquito Aedes albopictus (peak suppression 93.0% (95% CI 91.7-94.4)) and the Southern house mosquito Culex quinquefasciatus (peak suppression 98.3% (95% CI 97.0-99.5)) from a Maldivian island (size: 41.4 ha) within a year and thereafter observed a similar collapse of populations on a second island (size 49.0 ha; trap densities 4.1/ha and 8.2/ha for both trap types, respectively). On a third island (1.6 ha in size), we increased the human odor-baited trap density to 6.3/ha and then to 18.8/ha (combined with LSM but without oviposition traps), after which the Aedes mosquito population was eliminated within 2 months. Such suppression levels eliminate the risk of arboviral disease transmission for local communities and safeguard tourism, a vital economic resource for small island developing states. Terminating intense insecticide use (through fogging) benefits human and environmental health and restores insect biodiversity, coral reefs and marine life in these small and fragile island ecosystems. Moreover, trapping poses a convincing alternative to chemical control and reaches impact levels comparable to contemporary genetic control strategies. This can benefit numerous communities and provide livelihood options in small tropical islands around the world where mosquitoes pose both a nuisance and disease threat.

Keywords: arbovirus; elimination; islands; larval source management; mosquito; trapping.

Grant support

This work was financially supported by the Soneva Fushi resort (staff, transport and consumables) and Biogents AG (Regensburg, Germany); the latter provided the traps at cost price in support of this trial.