Spin fluctuations in the 112-type iron-based superconductor Ca0.82La0.18Fe0.96Ni0.04As2

J Phys Condens Matter. 2022 Sep 29;34(47). doi: 10.1088/1361-648X/ac9441.

Abstract

We report time-of-flight inelastic neutron scattering (INS) investigations on the spin fluctuation spectrum in the 112-type iron-based superconductor (FeSC) Ca0.82La0.18Fe0.96Ni0.04As2(CaLa-112). In comparison to the 122-type FeSCs with a centrosymmetric tetragonal lattice structure (space groupI4/mmm) at room temperature and an in-plane stripe-type antiferromagnetic (AF) order at low temperature, the 112 system has a noncentrosymmetric structure (space groupP21) with additional zigzag arsenic chains between Ca/La layers and a magnetic ground state with similar wavevectorQAFbut different orientations of ordered moments in the parent compounds. Our INS study clearly reveals that the in-plane dispersions and the bandwidth of spin excitations in the superconducting CaLa-112 closely resemble to those in 122 systems. While the total fluctuating moments⟨m2⟩≈4.6±0.2μB2/Fe are larger than 122 system, the dynamic correlation lengths are similar (ξ ≈ 10 Å). These results suggest that superconductivity in iron arsenides may have a common magnetic origin under similar magnetic exchange couplings with a dual nature from local moments and itinerant electrons, despite their different magnetic patterns and lattice symmetries.

Keywords: inelastic neutron scattering; iron-based superconductors; spin excitations.