Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Aug 23;12(9):1166.
doi: 10.3390/biom12091166.

Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance

Affiliations
Review

Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance

Samarpan Maiti et al. Biomolecules. .

Abstract

The heat shock protein 90 (Hsp90) is a molecular chaperone and a key regulator of proteostasis under both physiological and stress conditions. In mammals, there are two cytosolic Hsp90 isoforms: Hsp90α and Hsp90β. These two isoforms are 85% identical and encoded by two different genes. Hsp90β is constitutively expressed and essential for early mouse development, while Hsp90α is stress-inducible and not necessary for survivability. These two isoforms are known to have largely overlapping functions and to interact with a large fraction of the proteome. To what extent there are isoform-specific functions at the protein level has only relatively recently begun to emerge. There are studies indicating that one isoform is more involved in the functionality of a specific tissue or cell type. Moreover, in many diseases, functionally altered cells appear to be more dependent on one particular isoform. This leaves space for designing therapeutic strategies in an isoform-specific way, which may overcome the unfavorable outcome of pan-Hsp90 inhibition encountered in previous clinical trials. For this to succeed, isoform-specific functions must be understood in more detail. In this review, we summarize the available information on isoform-specific functions of mammalian Hsp90 and connect it to possible clinical applications.

Keywords: Hsp90 isoforms; Hsp90-isoform specific inhibitors; Hsp90α; Hsp90β; clinical relevance; molecular chaperone; paralog.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic representation of the molecular chaperone cycle of Hsp90α and Hsp90β, either as isoform homodimers or hypothetically as isoform heterodimers. NTD, MD, and CTD, N-terminal, middle, and C-terminal domains, respectively; CLR, charged linker region.
Figure 2
Figure 2
Venn diagram of common and isoform-specific functions of Hsp90. Isoform-specific functions, as discussed in the text, are highlighted in the corresponding colors.

Similar articles

Cited by

References

    1. Lindquist S., Craig E.A. The heat-shock proteins. Annu. Rev. Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. - DOI - PubMed
    1. Richter K., Haslbeck M., Buchner J. The heat shock response: Life on the verge of death. Mol. Cell. 2010;40:253–266. doi: 10.1016/j.molcel.2010.10.006. - DOI - PubMed
    1. Tissières A., Mitchell H.K., Tracy U.M. Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J. Mol. Biol. 1974;84:389–398. doi: 10.1016/0022-2836(74)90447-1. - DOI - PubMed
    1. De Maio A., Santoro M.G., Tanguay R.M., Hightower L.E. Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: A new view of biology, a new society, and a new journal. Cell Stress Chaperones. 2012;17:139–143. doi: 10.1007/s12192-012-0320-z. - DOI - PMC - PubMed
    1. Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones. 1996;1:97–98. doi: 10.1379/1466-1268(1996)001<0097:DOTHSR>2.3.CO;2. - DOI - PMC - PubMed

Publication types

Grants and funding

Work in Didier Picard’s laboratory was supported by a grant from the Swiss National Science Foundation and the Canton de Genève.

LinkOut - more resources