The coronavirus disease 2019 (COVID-19) represents a global public health burden. In addition to vaccination, safe and efficient antiviral treatment strategies to restrict the viral spread within the patient are urgently needed. An alternative approach to a single-drug therapy is the combinatory use of virus- and host-targeted antivirals, leading to a synergistic boost of the drugs' impact. In this study, we investigated the property of the MEK1/2 inhibitor ATR-002's (zapnometinib) ability to potentiate the effect of direct-acting antivirals (DAA) against SARS-CoV-2 on viral replication. Treatment combinations of ATR-002 with nucleoside inhibitors Molnupiravir and Remdesivir or 3C-like protease inhibitors Nirmatrelvir and Ritonavir, the ingredients of the drug Paxlovid, were examined in Calu-3 cells to evaluate the advantage of their combinatory use against a SARS-CoV-2 infection. Synergistic effects could be observed for all tested combinations of ATR-002 with DAAs, as calculated by four different reference models in a concentration range that was very well-tolerated by the cells. Our results show that ATR-002 has the potential to act synergistically in combination with direct-acting antivirals, allowing for a reduction in the effective concentrations of the individual drugs and reducing side effects.
Keywords: ATR-002; COVID-19; MEK1/2 inhibitor; Molnupiravir; Nirmatrelvir; Paxlovid; Remdesivir; Ritonavir; SARS-CoV-2; antiviral drug; drug synergy.