ATF6-Mediated Signaling Contributes to PARP Inhibitor Resistance in Ovarian Cancer

Mol Cancer Res. 2023 Jan 3;21(1):3-13. doi: 10.1158/1541-7786.MCR-22-0102.

Abstract

High-grade serous ovarian cancer (HGSOC) is the deadliest ovarian cancer histotype due in-part to the lack of therapeutic options for chemotherapy-resistant disease. PARP inhibitors (PARPi) represent a targeted treatment. However, PARPi resistance is becoming a significant clinical challenge. There is an urgent need to overcome resistance mechanisms to extend disease-free intervals. We established isogeneic PARPi-sensitive and -resistant HGSOC cell lines. In three PARPi-resistant models, there is a significant increase in AP-1 transcriptional activity and DNA repair capacity. Using RNA-sequencing and an shRNA screen, we identified activating transcription factor 6 (ATF6) as a mediator of AP-1 activity, DNA damage response, and PARPi resistance. In publicly available datasets, ATF6 expression is elevated in HGSOC and portends a poorer recurrence-free survival. In a cohort of primary HGSOC tumors, higher ATF6 expression significantly correlated to PARPi resistance. In PARPi-resistant cell lines and a PDX model, inhibition of a known ATF6 regulator, p38, attenuated AP-1 activity and RAD51 foci formation, enhanced DNA damage, significantly inhibited tumor burden, and reduced accumulation of nuclear ATF6.

Implications: This study highlights that a novel p38-ATF6-mediated AP-1 signaling axis contributes to PARPi resistance and provides a clinical rationale for combining PARPi and AP-1 signaling inhibitors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Activating Transcription Factor 6 / genetics
  • Antineoplastic Agents* / pharmacology
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm / genetics
  • Female
  • Humans
  • Ovarian Neoplasms* / drug therapy
  • Ovarian Neoplasms* / genetics
  • Ovarian Neoplasms* / pathology
  • Poly(ADP-ribose) Polymerase Inhibitors / pharmacology
  • Poly(ADP-ribose) Polymerase Inhibitors / therapeutic use
  • Transcription Factor AP-1 / genetics

Substances

  • Poly(ADP-ribose) Polymerase Inhibitors
  • Activating Transcription Factor 6
  • Transcription Factor AP-1
  • Antineoplastic Agents
  • ATF6 protein, human