A pH-Stable TbIII-Based Metal-Organic Framework as a Turn-On and Blue-Shift Fluorescence Sensor toward Benzaldehyde and Salicylaldehyde in Aqueous Solution

Inorg Chem. 2022 Oct 10;61(40):16177-16184. doi: 10.1021/acs.inorgchem.2c02763. Epub 2022 Sep 23.

Abstract

A new polydentate tetracarboxylic acid with a benzothiadiazole unit (4',4'''-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis([1,1'-biphenyl]-3,5-dicarboxylic acid), H4BTDBA) has been used to prepare a pH-stable three-dimensional TbIII-based metal-organic framework (MOF) with the formula {[(CH3)2NH2]0.7[Tb2(BTDBA)1.5(lac)0.7(H2O)2]·solvents}n (Hlac = lactic acid, JXUST-19). JXUST-19 exhibits a new (4,4,12)-connected topology based on tetranuclear [Tb4] clusters. JXUST-19 can remain stable when soaked in water for at least 1 week and in aqueous solutions with various pH values (2-12) for 24 h. Fluorescence study indicates JXUST-19 can be employed as a rare turn-on and blue-shift MOF sensor toward benzaldehyde (BZ) and salicylaldehyde (SA). To date, JXUST-19 represents the first TbIII-based turn-on MOF sensor toward salicylaldehyde in aqueous solution, and the fluorescence enhancement and naked-eye detection of BZ have been rarely reported. In addition, JXUST-19 based fluorescent test papers, light-emitting diode lamp beads, and portable composite films were developed to realize naked-eye detection of BZ and SA, which has great potential in practical applications.