A decoy microrobot that removes SARS-CoV-2 and its variants in wastewater

Cell Rep Phys Sci. 2022 Oct 19;3(10):101061. doi: 10.1016/j.xcrp.2022.101061. Epub 2022 Sep 21.

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can persist in wastewater for several days, has a risk of waterborne-human transmission. The emergence of SARS-CoV-2 variants with increased infection capacity further highlights the need to remove the virus and restrict its spread in wastewater. Here, we report a decoy microrobot created by camouflaging algae with cell membranes displaying angiotensin-converting enzyme 2 (ACE2) for effective elimination of SARS-CoV-2 and its variants. The decoy microrobots show fast self-propulsion (>85 μm/s), allowing for successful "on-the-fly" elimination of SARS-CoV-2 spike proteins and pseudovirus in wastewater. Moreover, relying on the robust binding between ACE2 and SARS-CoV-2 variants, the decoy microrobots exhibit a broad-spectrum elimination of virus with a high efficiency of 95% for the wild-type strain, 92% for the Delta variant, and 93% for the Omicron variant, respectively. Our work presents a simple and safe decoy microrobot aimed toward eliminating viruses and other environmental hazards from wastewater.

Keywords: ACE2 decoy; COVID-19; SARS-CoV-2; cell membrane camouflaging; microrobots.