Glutamatergic pedunculopontine tegmental neurons control wakefulness and locomotion via distinct axonal projections

Sleep. 2022 Dec 12;45(12):zsac242. doi: 10.1093/sleep/zsac242.

Abstract

Study objectives: The pedunculopontine tegmental (PPT) nucleus is implicated in many brain functions, ranging from sleep/wake control and locomotion, to reward mechanisms and learning. The PPT contains cholinergic, GABAergic, and glutamatergic neurons with extensive ascending and descending axonal projections. Glutamatergic PPT (PPTvGlut2) neurons are thought to promote wakefulness, but the mechanisms through which this occurs are unknown. In addition, some researchers propose that PPTvGlut2 neurons promote locomotion, yet even though the PPT is a target for deep brain stimulation in Parkinson's disease, the role of the PPT in locomotion is debated. We hypothesized that PPTvGluT2 neurons drive arousal and specific waking behaviors via certain projections and modulate locomotion via others.

Methods: We mapped the axonal projections of PPTvGlut2 neurons using conditional anterograde tracing and then photostimulated PPTvGlut2 soma or their axon terminal fields across sleep/wake states and analyzed sleep/wake behavior, muscle activity, and locomotion in transgenic mice.

Results: We found that stimulation of PPTvGlut2 soma and their axon terminals rapidly triggered arousals from non-rapid eye movement sleep, especially with activation of terminals in the basal forebrain (BF) and lateral hypothalamus (LH). With photoactivation of PPTvGlut2 terminals in the BF and LH, this wakefulness was accompanied by locomotion and other active behaviors, but stimulation of PPTvGlut2 soma and terminals in the substantia nigra triggered only quiet wakefulness without locomotion.

Conclusions: These findings demonstrate the importance of the PPTvGluT2 neurons in driving various aspects of arousal and show that heterogeneous brain nuclei, such as the PPT, can promote a variety of behaviors via distinct axonal projections.

Keywords: NREM sleep; locomotion; pedunculopontine; photostimulation; wake.

MeSH terms

  • Animals
  • Axons
  • Basal Forebrain*
  • Mice
  • Neurons / physiology
  • Sleep / physiology
  • Wakefulness* / physiology