Proteomics Combined with RNA Sequencing to Screen Biomarkers of Sepsis

Infect Drug Resist. 2022 Sep 21;15:5575-5587. doi: 10.2147/IDR.S380137. eCollection 2022.

Abstract

Purpose: To screen biomarkers in the serum of patients with sepsis by proteomics combined with RNA sequencing technology, and to find new diagnostic and therapeutic targets for sepsis.

Patients and methods: Blood samples of 22 sepsis patients (sepsis group) and 10 healthy volunteers (normal group) were collected from January 2019 to December 2020. Data-independent acquisition (DIA) method was employed for protein profiling, RNA sequencing was employed for gene sequencing. Subsequently, quality control and differential analysis (FC≥2; FDR<0.05) of DIA data and RNA sequencing data were performed. Then we identified expression trend-consistent divergence factors by nine-quadrant analysis; subsequent protein-protein interaction (PPI) and gene ontology (GO) functional enrichment analysis of intersection factors was performed, and meta-analysis of targets at transcriptome level was implemented using public datasets. Finally, five Peripheral blood mononuclear cell (PBMC) samples (NC=2; SIRS=1; SEPSIS =2) were collected, and cell localization analysis of core genes was performed by 10× single-cell RNA sequencing (scRNA-seq).

Results: Compared with the normal group, there were 4681 differentially expressed genes and 202 differentially expressed proteins in the sepsis group. Among them, 25 factors were expressed in both proteome and transcriptome, and the analysis of PPI and GO found that they were mainly involved in biological processes such as white blood cell and neutrophil response, inflammatory and immune response. Four core genes GSTO1, C1QA, RETN, and GRN were screened by meta-analysis, all of which were highly expressed in the sepsis group compared with the normal group (P<0.05); scRNA-seq showed the core genes were mainly localized in macrophage cell lines.

Conclusion: The core genes GSTO1, C1QA, RETN and GRN are mainly expressed in macrophages, widely involved in inflammation and immune responses, and are highly expressed in plasma in the sepsis, suggesting that they may become potential research targets for sepsis.

Keywords: RNA sequencing; biomarker; proteomics; sepsis; single-cell RNA sequencing.