Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial

Lancet. 2022 Oct 8;400(10359):1206-1212. doi: 10.1016/S0140-6736(22)01637-3. Epub 2022 Sep 27.

Abstract

Background: Previous atrial fibrillation screening trials have highlighted the need for more targeted approaches. We did a pragmatic study to evaluate the effectiveness of an artificial intelligence (AI) algorithm-guided targeted screening approach for identifying previously unrecognised atrial fibrillation.

Methods: For this non-randomised interventional trial, we prospectively recruited patients with stroke risk factors but with no known atrial fibrillation who had an electrocardiogram (ECG) done in routine practice. Participants wore a continuous ambulatory heart rhythm monitor for up to 30 days, with the data transmitted in near real time through a cellular connection. The AI algorithm was applied to the ECGs to divide patients into high-risk or low-risk groups. The primary outcome was newly diagnosed atrial fibrillation. In a secondary analysis, trial participants were propensity-score matched (1:1) to individuals from the eligible but unenrolled population who served as real-world controls. This study is registered with ClinicalTrials.gov, NCT04208971.

Findings: 1003 patients with a mean age of 74 years (SD 8·8) from 40 US states completed the study. Over a mean 22·3 days of continuous monitoring, atrial fibrillation was detected in six (1·6%) of 370 patients with low risk and 48 (7·6%) of 633 with high risk (odds ratio 4·98, 95% CI 2·11-11·75, p=0·0002). Compared with usual care, AI-guided screening was associated with increased detection of atrial fibrillation (high-risk group: 3·6% [95% CI 2·3-5·4] with usual care vs 10·6% [8·3-13·2] with AI-guided screening, p<0·0001; low-risk group: 0·9% vs 2·4%, p=0·12) over a median follow-up of 9·9 months (IQR 7·1-11·0).

Interpretation: An AI-guided targeted screening approach that leverages existing clinical data increased the yield for atrial fibrillation detection and could improve the effectiveness of atrial fibrillation screening.

Funding: Mayo Clinic Robert D and Patricia E Kern Center for the Science of Health Care Delivery.

Publication types

  • Clinical Trial

MeSH terms

  • Aged
  • Artificial Intelligence
  • Atrial Fibrillation* / diagnosis
  • Atrial Fibrillation* / epidemiology
  • Electrocardiography
  • Humans
  • Mass Screening
  • Prospective Studies

Associated data

  • ClinicalTrials.gov/NCT04208971