Negative allosteric modulation of CB1 cannabinoid receptor signaling suppresses opioid-mediated reward

Pharmacol Res. 2022 Nov:185:106474. doi: 10.1016/j.phrs.2022.106474. Epub 2022 Sep 28.

Abstract

Blockade of cannabinoid type 1 (CB1)-receptor signaling decreases the rewarding properties of many drugs of abuse and has been proposed as an anti-addiction strategy. However, psychiatric side-effects limit the clinical potential of orthosteric CB1 antagonists. Negative allosteric modulators (NAMs) represent a novel and indirect approach to attenuate CB1 signaling by decreasing affinity and/or efficacy of CB1 ligands. We hypothesized that a CB1-NAM would block opioid reward while avoiding the unwanted effects of orthosteric CB1 antagonists. GAT358, a CB1-NAM, failed to elicit cardinal signs of direct CB1 activation or inactivation when administered by itself. GAT358 decreased catalepsy and hypothermia but not antinociception produced by the orthosteric CB1 agonist CP55,940, suggesting that a CB1-NAM blocked cardinal signs of CB1 activation. Next, GAT358 was evaluated using in vivo assays of opioid-induced dopamine release and reward in male rodents. In the nucleus accumbens shell, a key component of the mesocorticolimbic reward pathway, morphine increased electrically-evoked dopamine efflux and this effect was blocked by a dose of GAT358 that lacked intrinsic effects on evoked dopamine efflux. Moreover, GAT358 blocked morphine-induced reward in a conditioned place preference (CPP) assay without producing reward or aversion alone. GAT358-induced blockade of morphine CPP was also occluded by GAT229, a CB1 positive allosteric modulator (CB1-PAM), and absent in CB1-knockout mice. Finally, GAT358 also reduced oral oxycodone (but not water) consumption in a two-bottle choice paradigm. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preventing opioid reward and treating opioid abuse while avoiding unwanted side-effects.

Keywords: Allosteric modulator; CB(1); Endocannabinoid; Morphine; Opioid; Reward.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analgesics, Opioid* / pharmacology
  • Animals
  • Dopamine*
  • Male
  • Mice
  • Mice, Knockout
  • Morphine / pharmacology
  • Receptor, Cannabinoid, CB1
  • Receptors, Cannabinoid
  • Reward

Substances

  • Analgesics, Opioid
  • Dopamine
  • Morphine
  • Receptors, Cannabinoid
  • Receptor, Cannabinoid, CB1