Identifying the molecular drivers of ALS-implicated missense mutations

J Med Genet. 2022 Sep 30;jmg-2022-108798. doi: 10.1136/jmg-2022-108798. Online ahead of print.


Background: Amyotrophic lateral sclerosis (ALS) is a progressively fatal, neurodegenerative disease associated with both motor and non-motor symptoms, including frontotemporal dementia. Approximately 10% of cases are genetically inherited (familial ALS), while the majority are sporadic. Mutations across a wide range of genes have been associated; however, the underlying molecular effects of these mutations and their relation to phenotypes remain poorly explored.

Methods: We initially curated an extensive list (n=1343) of missense mutations identified in the clinical literature, which spanned across 111 unique genes. Of these, mutations in genes SOD1, FUS and TDP43 were analysed using in silico biophysical tools, which characterised changes in protein stability, interactions, localisation and function. The effects of pathogenic and non-pathogenic mutations within these genes were statistically compared to highlight underlying molecular drivers.

Results: Compared with previous ALS-dedicated databases, we have curated the most extensive missense mutation database to date and observed a twofold increase in unique implicated genes, and almost a threefold increase in the number of mutations. Our gene-specific analysis identified distinct molecular drivers across the different proteins, where SOD1 mutations primarily reduced protein stability and dimer formation, and those in FUS and TDP-43 were present within disordered regions, suggesting different mechanisms of aggregate formation.

Conclusion: Using our three genes as case studies, we identified distinct insights which can drive further research to better understand ALS. The information curated in our database can serve as a resource for similar gene-specific analyses, further improving the current understanding of disease, crucial for the development of treatment strategies.

Keywords: Genetic Predisposition to Disease; Genetics, Medical.