Usage of celery root exosome as an immune suppressant; Lipidomic characterization of apium graveolens originated exosomes and its suppressive effect on PMA/ionomycin mediated CD4+ T lymphocyte activation

J Food Biochem. 2022 Oct 1;e14393. doi: 10.1111/jfbc.14393. Online ahead of print.


Diseases such as autoimmune, cancer, neurodegenerative diseases or obesity have a serious impact on the lives of patients all rise from a common point; the immune system. Various in vitro and in vivo studies on regulating the immune system have been made to correct these diseases. As one of the key effector cells of the immune system, T lymphocytes are the focus of many of these studies. In this study, exosomes isolated from a known anti-inflammatory plant, celery, were used to suppress the inflammatory response of T lymphocytes. Celery-derived exosomes (C-Exo) were isolated using an aqueous two-phase isolation method. The size distribution, morphology, particle concentration, and GC-FAME-based lipidomic analysis were determined for the isolated C-Exo. T lymphocytes were stimulated using Phorbol 12-myristate 13-acetate (PMA)/ionomycin, and treated with various doses of C-Exo. T lymphocyte responses were measured using qPCR and capillary Western blots. According to the results, C-Exo suppressed T lymphocytes in a dose-dependent manner in in vitro conditions. These findings show the potential of C-Exo as a therapeutic agent for immune disorders. PRACTICAL APPLICATION: Excessive immune response in the body adversely affects the treatment mechanism and process of many diseases such as autoimmune disorders, neurodegenerative diseases and GDHV. In this preliminary study, the role of extracellular vesicles obtained from celery roots in suppressing this high immune response was investigated. The suppressive effect of celery exosome was observed by creating an immune response in T cells and PBMC cells, which play a leading role in the immune response. The role of these vesicles in immune suppression, obtained from the root part of the celery plant and characterized, was determined by measuring both mRNA, intracellular protein and extracellular cytokine levels. Celery exosome suppressed activated T lymphocyte cells and PBMC cells in a dose-dependent manner. These vesicles, which can be used as an edible, can be used in many areas as immunosuppressants.

Keywords: Jurkat; T lymphoctye; exosome; extracellular vesicles; plant exosome; small extracellular vesicles; ımmunomodulation.