Energy metabolism in contracting rat skeletal muscle: adaptation to exercise training

Am J Physiol. 1987 Aug;253(2 Pt 1):C316-22. doi: 10.1152/ajpcell.1987.253.2.C316.


Rats were trained by means of a program of treadmill running. Hindlimb muscles were stimulated to contract in anesthetized rats. Measurements were made on the plantaris and the deep, predominantly fast-twitch red portion of the gastrocnemius. The concentration of ATP plus phosphocreatine (approximately P) decreased less and stabilized at a higher level, whereas inorganic phosphate (Pi) and AMP concentrations increased less and attained lower steady-state levels in trained than in untrained muscles at the same work rate. Similarly, when muscles were stimulated to contract in the perfused rat hindquarter preparation, phosphocreatine (PC) concentration decreased less in trained plantaris muscle during contractile activity that resulted in the same rate of oxygen uptake by trained and untrained muscles. In both preparations, glycogen concentration decreased less and lactate increased less in the trained muscle. From the changes that occurred in the PC-to-creatine ratio during contractile activity and from ATP concentration, it could be estimated that free ADP concentration increased less than one-half as much in trained as in untrained muscles. We conclude that, as a consequence of the adaptive increase in muscle mitochondria, approximately P concentration is higher and Pi, ADP, and AMP concentrations are lower in muscles of exercise-trained compared with untrained rats during the same contractile activity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptation, Physiological*
  • Anesthesia
  • Animals
  • Energy Metabolism*
  • Male
  • Muscle Contraction*
  • Muscles / metabolism*
  • Perfusion
  • Physical Conditioning, Animal*
  • Rats
  • Rats, Inbred Strains
  • Stimulation, Chemical