Precise Polishing and Electrochemical Applications of Quartz Nanopipette-Based Carbon Nanoelectrodes

Anal Chem. 2022 Oct 18;94(41):14092-14098. doi: 10.1021/acs.analchem.2c02296. Epub 2022 Oct 3.

Abstract

Quartz nanopipette-based carbon nanoelectrodes (CNEs) have attracted extensive attention in nanoscale electrochemistry due to their simple and efficient fabrication, chemically inert materials, flexible size (down to a few nanometers), and ultrathin insulating encapsulation. However, these pristine CNEs usually have significantly irregular morphology on the surface, which greatly limits the applications where inlaid nanodisks are urgently needed. To address this critical issue, we have developed a new precise polishing strategy using paraffin coating protection (i.e., avoiding breakage of quartz materials) and real-time monitoring with a high impedance meter (i.e., indicating electrode exposure) to produce flat carbon nanodisk electrodes. The surface flatness of polished CNEs has been confirmed by a combination of scanning electron microscopy, fast-scan cyclic voltammetry, and scanning electrochemical microscopy. As compared to the expensive focused ion beam processing, this strategy is competitive in terms of the low cost and availability of the equipment and enables the preparation of polished CNEs with sufficiently small size. The flattened CNEs have been exemplified for grafting molecular catalysts to achieve the durable catalysis of reactive molecules or for immobilizing single-particle electrocatalysts to measure the intrinsic activity under sufficient mass-transfer rates.