Efficient angiogenesis-based wound healing through hydrogel dressing with extracellular vesicles release

Mater Today Bio. 2022 Sep 24;16:100427. doi: 10.1016/j.mtbio.2022.100427. eCollection 2022 Dec.

Abstract

Wound healing and angiogenesis remain challenges for both clinical and experimental research worldwide. Periosteum-derived extracellular vesicles (P-sEVs) delivered by hydrogel dressings provide a potential strategy for wound defects to promote fast healing. In this study, we designed a NAGA/GelMA/Laponite/glycerol hydrogel wound dressing that can release P-sEVs to accelerate angiogenesis and wound healing (named P-sEVs@hydrogel) (N-acryloyl glycinamide, NAGA). The wound dressing showed multiple functions, including efficient angiogenesis, tissue adhesion and a physical barrier. P-sEVs significantly enhanced the proliferation, migration, and tube formation of endothelial cells in vitro. The results of in vivo experiments showed that P-sEVs@hydrogel accelerates the healing of a full-thickness defect wound model by stimulating the angiogenic process. The improved cell proliferation, tissue formation, remodeling, and re-epithelialization possibly resulted in the fast healing. This study shows that multifunctional hydrogel dressing combined with bioactive molecules can achieve fast and satisfactory wound healing in full-thickness wound defects and other related wounds.

Keywords: A. Hydrogel; B. Strength; C. Extracellular vesicles; D. Wound healing dressing.