Self-powered sensors do not require a power supply and are easy to miniaturize, which have potential for constructing wearable, portable, and real-time detection devices. However, it is challenging for the detection of low abundant targets due to the low output power density of fuel cells and much interference of complex biological environment. Herein, a new kind of photocatalytic zinc-air battery-based self-powered electrochemical sensor (ZAB-SPES) was constructed for the detection of microRNA let-7a (miRNA let-7a) by combining magnetic nanobeads (MBs) with a metal-organic framework loaded with glucose oxidase (MOFs@GOX). Poly(1,4-di(2-thienyl))benzene (PDTB) was used as the photocathode material, and the proposed ZAB-SPES had a high power density of 22.8 μW/cm2, which was 2-3-fold of commonly used photofuel cells. MBs can capture and separate miRNA from complex samples quickly with a high separation efficiency of 99% within 60 s. The competitive reaction of oxygen reduction reaction between PDTB and MOFs@GOX would change the output power density of the ZAB-SPES. Based on the relationship between output power density and target concentration, the ZAB-SPES realized ultrasensitive detection of miRNA let-7a with a detection limit down to 1.38 fM. Furthermore, the successful detection of miRNA let-7a in A549 cancer cells indicated the great prospects of ZAB-SPES in clinical analysis and early diagnosis of cancers.