Automated Tumor Segmentation in Radiotherapy

Semin Radiat Oncol. 2022 Oct;32(4):319-329. doi: 10.1016/j.semradonc.2022.06.002.


Autosegmentation of gross tumor volumes holds promise to decrease clinical demand and to provide consistency across clinicians and institutions for radiation treatment planning. Additionally, autosegmentation can enable imaging analyses such as radiomics to construct and deploy large studies with thousands of patients. Here, we review modern results that utilize deep learning approaches to segment tumors in 5 major clinical sites: brain, head and neck, thorax, abdomen, and pelvis. We focus on approaches that inch closer to clinical adoption, highlighting winning entries in international competitions, unique network architectures, and novel ways of overcoming specific challenges. We also broadly discuss the future of gross tumor volumes autosegmentation and the remaining barriers that must be overcome before widespread replacement or augmentation of manual contouring.

Publication types

  • Review

MeSH terms

  • Humans
  • Image Processing, Computer-Assisted / methods
  • Neoplasms* / diagnostic imaging
  • Neoplasms* / radiotherapy
  • Radiation Oncology*
  • Radiotherapy Planning, Computer-Assisted / methods