Evaluation of the composition and antimicrobial activities of essential oils from four species of Lamiaceae Martinov native to Iran

Sci Rep. 2022 Oct 11;12(1):17044. doi: 10.1038/s41598-022-21509-5.


In this study the essential oils obtained from four different plant species belonging to the Lamiaceae family were extracted by means of hydrodistillation and their composition and antimicrobial activity were evaluated. About 66 components were identified by using gas chromatography-mass spectrometry (GC-MS), and among all, thymol (67.7%), oleic acid (0.5-62.1%), (-)-caryophyllene oxide (0.4-24.8%), α-pinene (1.1-19.4%), 1,8-cineole (0.2-15.4%), palmitic acid (0.32-13.28%), ( +)spathulenol (11.16%), and germacrene D (0.3-10.3%) were the most abundant in all the species tested (i.e. Thymus daenensis, Nepeta sessilifolia, Hymenocrater incanus, and Stachys inflata). In particular, only the composition of essential oils from H. incanus was completely detected (99.13%), while that of the others was only partially detected. Oxygenated monoterpenes (75.57%) were the main compounds of essential oil from T. daenensis; sesquiterpenes hydrocarbons (26.88%) were the most abundant in S. inflata; oxygenated sesquiterpenes (41.22%) were mainly detected in H. incanus essential oil, while the essential oil from N. sessilifolia was mainly composed of non-terpene and fatty acids (77.18%). Due to their slightly different composition, also the antibacterial activity was affected by the essential oil tested. Indeed, the highest antibacterial and antifungal activities were obtained with the essential oil from T. daenensis by means of the inhibition halo (39 ± 1 and 25 ± 0 mm) against Gram-positive strains such as Staphylococcus aureus and Aspergillus brasiliensis. The minimal inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC) of the essential oils obtained from the four species varied from 16 to 2000 μg/mL and were strictly affected by the type of microorganism tested. As an example, the essential oils from H. incanus and S. inflata were the most effective against the Gram-negative bacterium Pseudomonas aeruginosa (MIC 16 and 63 μg/ml, respectively), which is considered one of the most resistant bacterial strain. Therefore, the essential oils obtained from the four species contained a suitable phytocomplexes with potential applications in different commercial area such as agriculture, food, pharmaceutical and cosmetic industries. Moreover, these essential oils can be considered a valuable natural alternative to some synthetic antibiotics, thanks to their ability to control the growth of different bacteria and fungi.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Antifungal Agents / pharmacology
  • Bacteria
  • Eucalyptol / pharmacology
  • Fatty Acids / pharmacology
  • Iran
  • Lamiaceae* / chemistry
  • Microbial Sensitivity Tests
  • Monoterpenes / pharmacology
  • Oils, Volatile* / chemistry
  • Oleic Acids / pharmacology
  • Palmitic Acids / pharmacology
  • Pharmaceutical Preparations
  • Thymol / pharmacology


  • Anti-Bacterial Agents
  • Antifungal Agents
  • Fatty Acids
  • Monoterpenes
  • Oils, Volatile
  • Oleic Acids
  • Palmitic Acids
  • Pharmaceutical Preparations
  • Thymol
  • Eucalyptol