Significant progress has been made in the use of artificial intelligence (AI) in clinical medicine over the past decade, but the clinical development of AI faces challenges. Although the spectrum of AI applications is growing within clinical medicine, including in subspecialty neurosurgery, applications focused on cerebral cavernous malformations (CCMs) are relatively scarce. The recently introduced brainstem cavernous malformation (BSCM) grading scale, approach triangles, and safe entry zone systems provide a discrete framework to explore future machine learning (ML) applications of AI systems. Given the immense scalability of these models, significant resources will likely be allocated to pursuing these future efforts.
Keywords: Artificial intelligence; Cavernoma; Cavernous malformation; Deep learning; Machine learning; Model; Statistics; Vascular.
Copyright © 2022 Elsevier Inc. All rights reserved.