A Novel Two-Dimensional ZnSiP2 Monolayer as an Anode Material for K-Ion Batteries and NO2 Gas Sensing

Molecules. 2022 Oct 9;27(19):6726. doi: 10.3390/molecules27196726.

Abstract

Using the crystal-structure search technique and first-principles calculation, we report a new two-dimensional semiconductor, ZnSiP2, which was found to be stable by phonon, molecular-dynamic, and elastic-moduli simulations. ZnSiP2 has an indirect band gap of 1.79 eV and exhibits an anisotropic character mechanically. Here, we investigated the ZnSiP2 monolayer as an anode material for K-ion batteries and gas sensing for the adsorption of CO, CO2, SO2, NO, NO2, and NH3 gas molecules. Our calculations show that the ZnSiP2 monolayer possesses a theoretical capacity of 517 mAh/g for K ions and an ultralow diffusion barrier of 0.12 eV. Importantly, the ZnSiP2 monolayer exhibits metallic behavior after the adsorption of the K-atom layer, which provides better conductivity in a period of the battery cycle. In addition, the results show that the ZnSiP2 monolayer is highly sensitive and selective to NO2 gas molecules.

Keywords: K-ion batteries; first-principles calculations; gas sensing; two-dimensional ZnSiP2.