Coverage Path Planning and Point-of-Interest Detection Using Autonomous Drone Swarms

Sensors (Basel). 2022 Oct 5;22(19):7551. doi: 10.3390/s22197551.


Unmanned Aerial Vehicles (UAVs) or drones presently are enhanced with miniature sensors that can provide information relative to their environment. As such, they can detect changes in temperature, orientation, altitude, geographical location, electromagnetic fluctuations, lighting conditions, and more. Combining this information properly can help produce advanced environmental awareness; thus, the drone can navigate its environment autonomously. Wireless communications can also aid in the creation of drone swarms that, combined with the proper algorithm, can be coordinated towards area coverage for various missions, such as search and rescue. Coverage Path Planning (CPP) is the field that studies how drones, independently or in swarms, can cover an area of interest efficiently. In the current work, a CPP algorithm is proposed for a swarm of drones to detect points of interest and collect information from them. The algorithm's effectiveness is evaluated under simulation results. A set of characteristics is defined to describe the coverage radius of each drone, the speed of the swarm, and the coverage path followed by it. The results show that, for larger swarm sizes, the missions require less time while more points of interest can be detected within the area. Two coverage paths are examined here-parallel lines and spiral coverage. The results depict that the parallel lines coverage is more time-efficient since the spiral increases the required time by an average of 5% in all cases for the same number of detected points of interest.

Keywords: coverage path planning; drones; point-of-interest detection.

MeSH terms

  • Altitude*
  • Unmanned Aerial Devices*

Grants and funding

This research received no external funding.