Background: Genomic defects in DNA-damage repair (DDR) mechanisms have been proposed to affect the radiosensitivity of prostate cancers. In this study, we intended to evaluate the prevalence of genetic alterations in a cohort of metastatic castration-resistant prostate cancer (mCRPC) patients undergoing radioligand therapy (RLT) with prostate-specific membrane antigen (PSMA)-inhibitors as well as the impact of such mutations on treatment outcomes.
Methods: Data of consecutive mCRPC patients from 2017 to 2021 who were treated with PSMA-RLT and underwent next-generation sequencing (NGS) were collected and analyzed for response and survival outcomes.
Results: In 95 patients of mCRPC treated with PSMA-RLT, 15 patients (median age: 66 years, range: 50-73 years; [177 Lu]Lu-PSMA-617, n = 12; [225 Ac]Ac-PSMA-617, n = 3) underwent NGS. The median progression-free survival (PFS) of this cohort was 3 months (95% confidence interval: 1.6-4.4 months). On NGS, 21 genetic alterations were reported in 10/15 (67%) patients, of which 13 were DDR-associated alterations involving the genes: ATM (n = 3), BRCA2 (n = 3), TP53 (n = 2), PTEN (n = 2), FANCD2 (n = 1), FANCM (n = 1), and NBN (n = 1). Overall, 5/15 (33%) patients harbored six pathogenic variants (BRCA2, n = 2; ATM, n = 1; TP53, n = 1; PTEN, n = 2). No significant difference was noted for the biochemical response, radiological response, PFS, and overall survival between the patients with and without genetic alterations.
Conclusions: Patients of mCRPC undergoing PSMA-RLT were frequently seen to harbor DDR-associated aberrations, albeit with no significant impact on treatment outcomes. Large prospective trials comparing PSMA-RLT-related outcomes in DDR-deficient and -proficient patients are required to bring out the differences, if any, in a more observable manner.
Keywords: PSMA; metastatic castration-resistant prostate cancer; mutations; next-generation sequencing; prostate-specific membrane antigen; radioligand therapy.
© 2022 Wiley Periodicals LLC.