Cardiometabolic Consequences of Deleting the Regulator of G protein Signaling-2 (Rgs2) From Cells Expressing Agouti-Related Peptide or the ANG (Angiotensin) II Type 1A Receptor in Mice

Hypertension. 2022 Dec;79(12):2843-2853. doi: 10.1161/HYPERTENSIONAHA.122.20169. Epub 2022 Oct 19.

Abstract

Background: RGS (regulator of G protein signaling) family members catalyze the termination of G protein signaling cascades. Single nucleotide polymorphisms in the RGS2 gene in humans have been linked to hypertension, preeclampsia, and anxiety disorders. Mice deficient for Rgs2 (Rgs2Null) exhibit hypertension, anxiety, and altered adipose development and function.

Methods: To study cell-specific functions of RGS2, a novel gene-targeted mouse harboring a conditional allele for the Rgs2 gene (Rgs2Flox) was developed. These mice were bred with mice expressing Cre-recombinase via the Agouti-related peptide locus (Agrp-Cre) to cause deletion of Rgs2 from all cells expressing Agrp (Rgs2Agrp-KO), or a novel transgenic mouse expressing Cre-recombinase via the ANG (angiotensin) type 1A receptor (Agtr1a/ AT1A) promoter encoded in a bacterial artificial chromosome (BAC-AT1A-Cre) to delete Rgs2 in all Agtr1a-expressing cells (Rgs2AT1A-KO).

Results: Whereas Rgs2Flox, Rgs2Agrp-KO, and BAC-AT1A-Cre mice exhibited normal growth and survival, Rgs2AT1A-KO exhibited pre-weaning lethality. Relative to littermates, Rgs2Agrp-KO exhibited reduced fat gains when maintained on a high fat diet, associated with increased energy expenditure. Similarly, surviving adult Rgs2AT1A-KO mice also exhibited increased energy expenditure. Surprisingly, given the hypertensive phenotype previously reported for Rgs2Null mice and evidence supporting a role for RGS2 in terminating AT1A signaling in various cell types, Rgs2AT1A-KO mice exhibited normal blood pressure, ingestive behaviors, and renal functions, both before and after chronic infusion of ANG (490 ng/kg/min, sc).

Conclusions: These results demonstrate the development of a novel mouse with conditional expression of Rgs2 and illustrate the role of Rgs2 within selected cell types for cardiometabolic control.

Keywords: G protein coupled receptor; GTPase-activating proteins; animal model; mouse; second-messenger.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agouti-Related Protein
  • Animals
  • Hypertension* / genetics
  • Mice
  • Mice, Knockout
  • Mice, Transgenic
  • RGS Proteins* / genetics
  • Receptor, Angiotensin, Type 1 / genetics
  • Recombinases

Substances

  • Agouti-Related Protein
  • Receptor, Angiotensin, Type 1
  • Recombinases
  • RGS Proteins