Conductance of concentrated electrolytes: Multivalency and the Wien effect

J Chem Phys. 2022 Oct 21;157(15):154502. doi: 10.1063/5.0111645.

Abstract

The electric conductivity of ionic solutions is well understood at low ionic concentrations of up to a few millimolar but becomes difficult to unravel at higher concentrations that are still common in nature and technological applications. A model for the conductivity at high concentrations was recently put forth for monovalent electrolytes at low electric fields. The model relies on applying a stochastic density-functional theory and using a modified electrostatic pair-potential that suppresses unphysical, short-range electrostatic interactions. Here, we extend the theory to multivalent ions as well as to high electric fields where a deviation from Ohm's law known as the Wien effect occurs. Our results are in good agreement with experiments and recent simulations.