Synthesis and In Silico Study of Some New bis-[1,3,4]thiadiazolimines and bis-Thiazolimines as Potential Inhibitors for SARS-CoV-2 Main Protease

Curr Issues Mol Biol. 2022 Sep 30;44(10):4540-4556. doi: 10.3390/cimb44100311.

Abstract

A novel series of bis-[1,3,4]thiadiazolimines, and bis-thiazolimines, with alkyl linker, were synthesized through general routes from cyclization of 1,1'-(hexane-1,6-diyl)bis(3-phenylthiourea) and hydrazonoyl halides or α-haloketones, respectively. Docking studies were applied to test the binding affinity of the synthesized products against the Mpro of SARS-CoV-2. The best compound, 5h, has average binding energy (-7.50 ± 0.58 kcal/mol) better than that of the positive controls O6K and N3 (-7.36 ± 0.34 and -6.36 ± 0.31 kcal/mol). Additionally, the docking poses (H-bonds and hydrophobic contacts) of the tested compounds against the Mpro using the PLIP web server were analyzed.

Keywords: SARS-CoV-2 Mpro; bis-(3-phenylthiourea); hydrazonoyl halides; molecular docking; α-haloketones.

Grant support

This research received no external funding.