Carotegenic Virgibacillus halodenitrificans from Wadi El-Natrun Salt Lakes: Isolation, Optimization, Characterization and Biological Activities of Carotenoids

Biology (Basel). 2022 Sep 27;11(10):1407. doi: 10.3390/biology11101407.

Abstract

Carotenoids, as phytonutrient pigments, are signified by their unique beneficial features that serve human health and the surrounding ecosystem. Haloalkaliphiles from soda lakes produce different natural bioactive molecules; however, their ability to produce carotenoids has been limited. Therefore, this study focused on the screening and isolation of carotenoid-producing haloalkaliphilic microbes. Out of 10 isolates, a powerful carotigenic bacterium was isolated, characterized phenotypically and identified on the molecular level as Virgibacillus halodenitrificans. By employing statistical approaches like Plackett-Burman design and central composite design, the influence of significant nutritional variables on carotenoids production was screened and optimized. Predictive modeling manifested that carotenoid yield was 36.42 mg/mL, a 2.12-fold enhancement compared to the basal conditions through inoculating 1.8% of bacterial biomass on optimized medium containing yeast extract (2 g/mL), peptone (10 g/mL) and NaCl (233.6 g/mL). The carotenoids content was confirmed by UV-Vis spectrum which detected a characteristic unique peak with left and right shoulders at 461 nm, 490 and 522 nm. However, FTIR and Raman spectroscopy showed the presence of several functional groups. Meanwhile, LC-MS confirmed that the examined carotenoids were composed of β-carotene, lutein and β-Apo-8'-carotenal mixture. As a bioactive agent, the carotenoids of V. halodenitrificans DASH showed characteristic antagonistic potency against a wide spectrum of Gram-positive and Gram-negative pathogens. Interestingly, a potent antifungal capacity was observed against Candida albicans, reflecting promising mycocidal efficacy against COVID-19 white fungal post-infections. Furthermore, carotenoids (20 μg/mL) inhibited the biofilm formation of P. aeruginosa and S. aureus by 54.01 ± 3.97% and 80.082 ± 0.895%, respectively. Our results proposed that haloalkaliphiles of Wadi El-Natrun lakes are promising sources of carotenoids that exhibited efficiency as safe, biocompatible and natural bioactive agents for environmental, medical and industrial applications.

Keywords: COVID-19; MDR; antibiofilm; antimicrobial; carotenoids; central composite design; halophiles; pigments; soda lakes.

Grants and funding

This research received no external funding.