Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils that provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Fibrillin-1 is a component of the wall of large arteries but has been poorly described in other vessels. We examined the microvasculature in the retina using wild type mice and two models of Marfan syndrome, Fbn1C1041G/+ and Fbn1mgR/mgR. In the mouse retina, fibrillin-1 was detected around arterioles, in close contact with the basement membrane, where it colocalized with MAGP1. Both a mutation in fibrillin-1 or fibrillin-1 underexpression characteristically altered the microvasculature. In Fbn1C1041G/+ and Fbn1mgR/mgR mice, arterioles were enlarged with reduced MAGP1 deposition and focal loss of smooth muscle cell coverage. Losartan, which prevents aortic enlargement in Fbn1C1041G/+ mice, prevented smooth muscle cell loss and vessel leakiness when administrated in a preventive mode. Moreover, losartan also partially rescued the defects in a curative mode. Thus, fibrillin-1/MAGP1 performs essential functions in arteriolar integrity and mutant fibrillin-1-induced defects can be prevented or partially rescued pharmacologically. These new findings could have implications for people with Marfan syndrome.
Keywords: MAGP1; Marfan syndrome; arterioles; basement membrane; endothelial cells; fibrillin-1; ocular disease; vascular leakage.