Mode-locking in quadratically nonlinear waveguide arrays

Opt Express. 2022 Aug 1;30(16):28454-28469. doi: 10.1364/OE.461532.

Abstract

A two-dimensional theoretical model is constructed to describe optical mode-locking (ML) in quadratically nonlinear waveguide arrays (QWGAs). Steady-state solutions of the considered model are obtained by a modified pseudo-spectral renormalization algorithm, and the mode-locking dynamics of the model are investigated through direct simulation of the nonlinear evolution and a linear stability analysis of the solutions. It is shown that stable mode-locking of elliptic steady-state solutions in quadratically nonlinear waveguide arrays are possible for a wide range of parameters, suggesting that quadratically nonlinear materials are well suited for producing stable mode-locked states for a wide range of applications.