Identification of a fatty acid synthase gene (FAS1) from Laodelphax striatellus planthoppers contributing to fecundity

Insect Sci. 2023 Jun;30(3):599-610. doi: 10.1111/1744-7917.13125. Epub 2022 Dec 8.

Abstract

Fatty acid synthase (FAS) is a multifunctional enzyme that plays an important role in the formation of fatty acids. The fatty acids take part in many processes, such as cell signaling and energy metabolism, and in insects they are important in both cuticular hydrocarbon (CHC) formation and reproduction. Here we characterized the sequence structure and function of an FAS from the small brown planthopper (SBPH), Laodelphax striatellus. The full-length open reading frame (ORF) sequence of LsFAS1 was 7122 bp, encoding a predicted protein of 2373 amino acid residues. There were 7 functional domains in the LsFAS1 protein sequence. Gene expression screening by real-time quantitative polymerase chain reaction (RT-qPCR) showed that LsFAS1 was expressed in all developmental stages. Relative expression was highest at the 4th-instar and female adult stages. Among different tissues, the expression level of LsFAS1 in the ovary was the highest. Phylogenetic analysis showed that LsFAS1 clustered in a clade with 2 FASs from Nilaparvata lugens. Furthermore, these 3 FASs are related to cockroach BgFAS and locust LmFAS. After RNA interference-mediated knock-down, most treated insects died at eclosion. In addition, the lifespan of dsFAS1-treated female adults was shorter than that of the dsGFP-injected control, and offspring production decreased. Also, the expression of vitellogenin (Vg) and vitellogenin receptor (VgR) genes decreased. Virgin females dissected at days 2 and 4 post-eclosion showed many matured oocytes in planthoppers treated with dsGFP but not with dsFAS1. These data highlight the importance of LsFAS1 in SBPH, including a role in reproduction.

Keywords: Laodelphax striatellus; RNA interference; fatty acid synthase; fecundity; sequence analysis.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Female
  • Fertility* / genetics
  • Hemiptera* / metabolism
  • Phylogeny
  • Reproduction / genetics